Heartwood. An unidentified sterol, m.p. 73–74° and β-sitosterol (ether extract-chromatography on Al₂O₃). Leucocyanidin (acetone extract), microcrystalline powder (EtOAcpetrol), m.p. > 330° (darkens at 190°), $[a]_D^{30}$ –8·6, λ_{max} 280 nm, colour reactions, preparation of enol acetate (Ac₂O + Py), m.p. 200°, $[a]_D^{30}$ –14° and methyl ether (Me₂SO₄ + K₂CO₃, 36 hr), m.p. 260–263° and acid conversion to cyanidin chloride.

Acknowledgements—We are grateful to Prof. Dr L. Horhammer, Munich for the spectral data and direct comparison of our quercetin-3-arabinoside with authentic avicularin, and the Principal, J.I.P.M.E.R. for encouragement.

Phytochemistry, 1971, Vol. 10, p. 1940. Pergamon Press. Printed in England.

ASCLEPIADACEAE

ISOLATION OF FRIEDELIN FROM SECAMONE AFZELII

F. EL-SAID, E. A. SOFOWORA and M. A. SALAMI Drug Research Unit, Faculty of Pharmacy, University of Ife, Nigeria

and

M. SAINSBURY

School of Chemistry and Chemical Engineering, Bath University of Technology, Bath, Somerset

(Received 22 December 1970)

Following a procedure which we normally use for the isolation of the alkaloidal fraction of plant organs, friedelin was obtained from the root of Secamone afzelii Schultes (= S. myrtifolia Benth.) This is the first mention of the occurrence of friedelin in S. afzelii although, in a recent review, Sainsbury¹ mentioned the fact that this compound and epifriedelinol frequently co-occur and are abundant in Nature. Sarcostemma viminale R.Br. is the only other member of the Asclepiadaceae reported to contain friedelin.

1 kg of the powered root was moistened with conc. ammonia solution and allowed to stand for 3 hr before it was exhausted with CHCl₃ in a soxhlet. The CHCl₃ extract was evaporated to dryness *in vacuo*, then the granular residue was triturated with warm N HCl (10×100 ml), and filtered before the acidic extract was shaken with CHCl₃ (5×100 ml). The CHCl₃ fraction was dried (MgSO₄) and evaporated to dryness to afford 760 mg of a brown residue (I). Preparative TLC of I (Silica gel; CHCl₃-alcohol (abs.)-acetone 90:5:5) gave, among others, a band (R_f 0.70) with bright blue fluorescence in UV and this was eluted with MeOH. Removal of the MeOH, *in vacuo*, gave a pale brownish residue 60 mg of which was taken up in benzene (20 ml), washed twice with dil. HCl (5 ml), dried (Mg SO₄) and chromatographed on neutral grade Al₂O₃. The benzene fraction yielded friedelin (8 mg) which on TLC (Al₂O₃; 5% HOAc in C₆H₆) gave R_f 0.37 and red colour with 5% H₂SO₄ in EtOH after heating at 100° for 5 min. Recrystallization from benzene gave m.p. 261–262°; [a]_D²¹ – 20° (benzene); Mass M = 426·3869. C₃₀H₅₀O requires M = 426·3861. IR(CCl₄) λ _{max} 1709 cm⁻¹. This material was identical in all respects to authentic friedelin.

¹ M. SAINSBURY, Phytochem 9, 2209 (1970).